Advertisement

Comparing two types of loading during inspiratory muscle training in patients with weaning difficulties: An exploratory study

  • Marine Van Hollebeke
    Correspondence
    Corresponding author at: ON I Herestraat 49 – bus 1510, 3000 Leuven, Belgium.
    Affiliations
    KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium

    Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
    Search for articles by this author
  • Sophie Pleysier
    Affiliations
    KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
    Search for articles by this author
  • Diego Poddighe
    Affiliations
    KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium

    Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
    Search for articles by this author
  • Laura Muelas Gómez
    Affiliations
    Rehabilitation Unit, Department of Physiotherapy, University Hospital Puerta de Hierrro Majadahonda, Madrid, Spain
    Search for articles by this author
  • Yasir Qaiser Choudhary
    Affiliations
    KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
    Search for articles by this author
  • Beatrix Clerckx
    Affiliations
    KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium

    Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
    Search for articles by this author
  • Jan Muller
    Affiliations
    Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
    Search for articles by this author
  • Greet Hermans
    Affiliations
    Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium

    KU Leuven, Division of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, Leuven, Belgium
    Search for articles by this author
  • Rik Gosselink
    Affiliations
    KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium

    Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
    Search for articles by this author
  • Daniel Langer
    Affiliations
    KU Leuven, Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium

    Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
    Search for articles by this author
Published:August 27, 2022DOI:https://doi.org/10.1016/j.aucc.2022.07.001

      Abstract

      Background

      Inspiratory muscle training improves respiratory muscle function and may improve weaning outcomes in patients with weaning difficulties. Compared to the commonly used pressure threshold loading, tapered flow resistive loading better accommodates pressure–volume relationships of the respiratory muscles, which might help to facilitate application of external loads and optimise training responses.

      Objective

      The objective of this study was to compare acute breathing pattern responses and perceived symptoms during an inspiratory muscle training session performed against identical external loading provided as pressure threshold loading or as tapered flow resistive loading. We hypothesised that for a given loading, tapered flow resistive loading would allow larger volume expansion and higher inspiratory flow responses and consequently higher external work of breathing and power than pressure threshold loading and that subsequently patients perceived fewer symptoms during tapered flow resistive loading than during pressure threshold loading.

      Methods

      In this exploratory study, 21 patients (maximal inspiratory pressure: 35 ± 14 cmH2O and vital capacity:0.85 L±0.37 L) performed two training sessions against external loads equalling 42 ± 15% of maximal inspiratory pressure provided either as pressure threshold loading or as tapered flow resistive loading. During these training sessions, breath-by-breath data of breathing parameters were collected, and patients rated their perceived breathing effort, dyspnoea, and unpleasantness.

      Results

      Compared to pressure threshold loading, tapered flow resistive loading allowed significantly larger volume expansion (0.53 ± 0.28 L versus 0.41 ± 0.20 L, p < 0.01) and inspiratory flow responses (0.43 ± 0.20 L/s versus 0.33 ± 0.16 L/s, p = 0.01). Tapered flow resistive loading was perceived as less unpleasant (3.1 ± 1.9 versus 3.8 ± 2.4, p = 0.048). No significant differences in breathing effort, dyspnoea, work of breathing, and power were observed.

      Conclusions

      For a given loading, inspiratory muscle training with tapered flow resistive loading allowed larger volume expansion and higher inspiratory flow responses than pressure threshold loading, which led patients to perceive tapered flow resistive loading as less unpleasant. This might help us to facilitate early implementation of inspiratory muscle training in patients with weaning difficulties.

      Clinical trial registration number

      Clinicaltrials.gov identifier: NCT03240263

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Australian Critical Care
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vorona S.
        • Sabatini U.
        • Al-Maqbali S.
        • Bertoni M.
        • Dres M.
        • Bissett B.
        • et al.
        Inspiratory muscle rehabilitation in critically ill adults. A systematic review and meta-analysis.
        Ann Am Thorac Soc. 2018; 15 (Epub 2018/03/28. PubMed PMID: 29584447): 735-744https://doi.org/10.1513/AnnalsATS.201712-961OC
        • Elkins M.
        • Dentice R.
        Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the intensive care unit: a systematic review.
        J Physiother. 2015; 61 (Epub 2015/06/21. PubMed PMID: 26092389): 125-134https://doi.org/10.1016/j.jphys.2015.05.016
        • Hoffman M.
        • Van Hollebeke M.
        • Clerckx B.
        • Muller J.
        • Louvaris Z.
        • Gosselink R.
        • et al.
        Can inspiratory muscle training improve weaning outcomes in difficult to wean patients? A protocol for a randomised controlled trial (IMweanT study).
        BMJ Open. 2018; 8e021091https://doi.org/10.1136/bmjopen-2017-021091
        • da Silva Guimarães B.
        • de Souza L.C.
        • Cordeiro H.F.
        • Regis T.L.
        • Leite C.A.
        • Puga F.P.
        • et al.
        Inspiratory muscle training with an electronic resistive loading device improves prolonged weaning outcomes in a randomized controlled trial.
        Crit Care Med. 2021; 49 (Epub 2020/12/18. PubMed PMID: 33332819): 589-597https://doi.org/10.1097/ccm.0000000000004787
        • Van Hollebeke M.
        • Gosselink R.
        • Langer D.
        Training specificity of inspiratory muscle training methods: a randomized trial.
        Front Physiol. 2020; 11 (Epub 2020/12/22. PubMed PMID: 33343384; PubMed Central PMCID: PMC7744620)576595https://doi.org/10.3389/fphys.2020.576595
        • Rahn H.
        • Otis A.B.
        • Leigh E.C.
        • Wallace O.F.
        The pressure-volume diagram of the thorax and lung.
        Am J Physiol. 1946; 146 (Epub 1946/01/01. PubMed PMID: 20982947): 161-178https://doi.org/10.1152/ajplegacy.1946.146.2.161
        • Langer D.
        • Charususin N.
        • Jacome C.
        • Hoffman M.
        • McConnell A.
        • Decramer M.
        • et al.
        Efficacy of a novel method for inspiratory muscle training in people with chronic obstructive pulmonary disease.
        Phys Ther. 2015; 95 (Epub 2015/04/11. PubMed PMID: 25858974): 1264-1273https://doi.org/10.2522/ptj.20140245
        • Tzelepis G.E.
        • Vega D.L.
        • Cohen M.E.
        • McCool F.D.
        Lung volume specificity of inspiratory muscle training.
        J Appl Physiol. 1994; 77 (1985) (Epub 1994/08/01. PubMed PMID: 8002529): 789-794https://doi.org/10.1152/jappl.1994.77.2.789
        • Tzelepis G.E.
        • Vega D.L.
        • Cohen M.E.
        • Fulambarker A.M.
        • Patel K.K.
        • McCool F.D.
        Pressure-flow specificity of inspiratory muscle training.
        J Appl Physiol. 1994; 77 (1985) (Epub 1994/08/01. PubMed PMID: 8002530): 795-801https://doi.org/10.1152/jappl.1994.77.2.795
        • Romer L.M.
        • McConnell A.K.
        Specificity and reversibility of inspiratory muscle training.
        Med Sci Sports Exerc. 2003; 35 (PubMed PMID: 12569211): 237-244https://doi.org/10.1249/01.MSS.0000048642.58419.1E
        • Tzelepis G.E.
        • Kadas V.
        • McCool F.D.
        Inspiratory muscle adaptations following pressure or flow training in humans.
        Eur J Appl Physiol. 1999; 79: 467-471https://doi.org/10.1007/s004210050538
        • Langer D.
        • Jacome C.
        • Charususin N.
        • Scheers H.
        • McConnell A.
        • Decramer M.
        • et al.
        Measurement validity of an electronic inspiratory loading device during a loaded breathing task in patients with COPD.
        Respir Med. 2013; 107 (Epub 2013/02/21. PubMed PMID: 23421970): 633-635https://doi.org/10.1016/j.rmed.2013.01.020
        • Van Hollebeke M.
        • Poddighe D.
        • Gojevic T.
        • Clerckx B.
        • Muller J.
        • Hermans G.
        • et al.
        Measurement validity of an electronic training device to assess breathing characteristics during inspiratory muscle training in patients with weaning difficulties.
        PLoS One. 2021; 16 (Epub 2021/08/27. PubMed PMID: 34437582)e0255431https://doi.org/10.1371/journal.pone.0255431
        • Beduneau G.
        • Pham T.
        • Schortgen F.
        • Piquilloud L.
        • Zogheib E.
        • Jonas M.
        • et al.
        Epidemiology of weaning outcome according to a new definition. The WIND study.
        Am J Respir Crit Care Med. 2017; 195 (Epub 2016/09/15. PubMed PMID: 27626706): 772-783https://doi.org/10.1164/rccm.201602-0320OC
        • Borg G.A.
        Psychophysical bases of perceived exertion.
        Med Sci Sports Exerc. 1982; 14 (Epub 1982/01/01. PubMed PMID: 7154893): 377-381
        • Neder J.A.
        • Andreoni S.
        • Lerario M.C.
        • Nery L.E.
        Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation.
        Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas. 1999; 32 (Epub 1999/07/21. PubMed PMID: 10412550): 719-727https://doi.org/10.1590/s0100-879x1999000600007
        • Quanjer P.H.
        • Tammeling G.J.
        • Cotes J.E.
        • Pedersen O.F.
        • Peslin R.
        • Yernault J.-C.
        Lung volumes and forced ventilatory flows.
        Eur Respir J. 1993; 6: 5-40https://doi.org/10.1183/09041950.005s1693
        • Hawley J.A.
        Specificity of training adaptation: time for a rethink?.
        J Physiol. 2008; 586 (Epub 2008/01/03. PubMed PMID: 18167367; PubMed Central PMCID: PMC2375570): 1-2https://doi.org/10.1113/jphysiol.2007.147397
        • Charususin N.
        • Gosselink R.
        • Decramer M.
        • Demeyer H.
        • McConnell A.
        • Saey D.
        • et al.
        Randomised controlled trial of adjunctive inspiratory muscle training for patients with COPD.
        Thorax. 2018; 73 (Epub 2018/06/20. PubMed PMID: 29914940): 942-950https://doi.org/10.1136/thoraxjnl-2017-211417