Relying on pulse oximetry to avoid hypoxaemia and hyperoxia: A multicentre prospective cohort study in patients with circulatory failure



      The purpose of this study was to assess the predictive performance of pulse oximetry (SpO2) to rule out hypoxaemia and hyperoxia in critically ill patients.


      SpO2, arterial oxygenation (SaO2), and arterial partial pressure of oxygen (PaO2) were prospectively and simultaneously measured every 6 h during the first 24 h of intensive care unit admission in a multicentre cohort of critically ill patients suffering acute circulatory failure. Likelihood ratios associated with different cutoff values of SpO2 to rule out hypoxaemia (SaO2 < 90% or PaO2 < 60 mmHg) or hyperoxia (SaO2 > 95% or PaO2 > 100 mmHg) and post-test probabilities were calculated. Mean bias between SpO2 and SaO2 and agreement interval were calculated. Area under the receiver operating characteristics associated with SpO2 to predict different threshold values of SaO2 and PaO2 were calculated.


      Five hundred seventy-one patients (mean [standard deviation] Simplified Acute Physiology Score II: 58.7 [20.1]; mechanically ventilated 75.6%) with 2643 available SaO2 and PaO2 samples and corresponding 2643 SpO2 values were analysed. Mean bias between SpO2 and SaO2 was 1.1%, and its agreement interval ranged from −8.2 to +11.1%. SpO2 cutoff values of 88%, 90%, and 92% left the possibility that 8%–13% of patients had hypoxaemia. SpO2 < 95% left the possibility that 31% of patients had hyperoxia. All calculated areas under the receiver operating characteristics showed a lower limit of their 95% confidence interval below 0.85


      In this cohort of patients with circulatory failure, SpO2 had poor discriminative ability to rule out hypoxaemia and hyperoxia. Overconfidence upon SpO2 monitoring may be dangerous.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Australian Critical Care
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Nitzan M.
        • Romem A.
        • Koppel R.
        Pulse oximetry: fundamentals and technology update.
        Med Dev (Auckl). 2014; 7: 231-239
        • Buonocore G.
        • Perrone S.
        • Tataranno M.L.
        Oxygen toxicity: chemistry and biology of reactive oxygen species.
        Semin Fetal Neonatal Med. 2010; 15: 186-190
        • Brugniaux J.V.
        • Coombs G.B.
        • Barak O.F.
        • Dujic Z.
        • Sekhon M.S.
        • Ainslie P.N.
        Highs and lows of hyperoxia: physiological, performance, and clinical aspects.
        Am J Physiol Regul Integr Comp Physiol. 2018; 315: R1-R27
        • Wu M.Y.
        • Yiang G.T.
        • Liao W.T.
        • Tsai A.P.
        • Cheng Y.L.
        • Cheng P.W.
        • et al.
        Current mechanistic concepts in ischemia and reperfusion injury.
        Cell Physiol Biochem. 2018; 46: 1650-1667
        • Siemieniuk R.A.C.
        • Chu D.K.
        • Kim L.H.
        • Güell-Rous M.R.
        • Alhazzani W.
        • Soccal P.M.
        • et al.
        Oxygen therapy for acutely ill medical patients: a clinical practice guideline.
        BMJ. 2018; 363: k4169
        • Van de Louw A.
        • Cracco C.
        • Cerf C.
        • Harf A.
        • Duvaldestin P.
        • Lemaire F.
        • et al.
        Accuracy of pulse oximetry in the intensive care unit.
        Intensive Care Med. 2001; 27: 1606-1613
        • Helmerhorst H.J.
        • Arts D.L.
        • Schultz M.J.
        • van der Voort P.H.
        • Abu-Hanna A.
        • de Jonge E.
        • et al.
        Metrics of arterial hyperoxia and associated outcomes in critical care.
        Crit Care Med. 2017; 45: 187-195
      1. ref[erence not provided for manuscript anonymization purpose].

        • Qiu H.
        • Tong Z.
        • Ma P.
        • Hu M.
        • Peng Z.
        • Wu W.
        • et al.
        China critical care clinical trials Group (CCCCTG). Intensive care during the coronavirus epidemic.
        Intensive Care Med. 2020; 46: 576-578
        • Tharwat A.
        Classification assessment methods.
        Appl Comput Inform. 2018; ([Online]. Available from:)
        • Edwards D.C.
        • Metz C.E.
        The three-class ideal observer for univariate normal data: decision variable and ROC surface properties.
        J Math Psychol. 2012; 56: 256-273
        • Bein T.
        • Grasso S.
        • Moerer O.
        • Quintel M.
        • Guerin C.
        • Deja M.
        • et al.
        The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia.
        Intensive Care Med. 2016; 42: 699-711
        • Grimes D.A.
        • Schulz K.F.
        Refining clinical diagnosis with likelihood ratios.
        Lancet. 2005; 365: 1500-1505
        • Kampfrath T.
        • Levinson S.S.
        Brief critical review: statistical assessment of biomarker performance.
        Clin Chim Acta. 2013; 419: 102-127
        • Bland J.M.
        • Altman D.G.
        Measuring agreement in method comparison studies.
        Stat Methods Med Res. 1999; 8: 135-160
        • R Core Team
        R: a language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2013 (ISBN 3-900051-07-0)
        • Le Gall J.R.
        • Lemeshow S.
        • Saulnier F.
        A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study.
        JAMA. 1993; 270: 2957-2963
        • Vincent J.L.
        • de Mendonca A.
        • Cantraine F.
        • Moreno R.
        • Takala J.
        • Suter P.M.
        • et al.
        Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study.
        Crit Care Med. 1998; 26 (Working group on “sepsis-related problems” of the European Society of Intensive Care Med): 1793-1800
        • Mackle D.
        • Bellomo R.
        • Bailey M.
        • Beasley R.
        • Deane A.
        • Eastwood G.
        • et al.
        • ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group
        ICU-ROX investigators the Australian and New Zealand intensive care society clinical trials Group. Conservative oxygen therapy during mechanical ventilation in the ICU.
        N Engl J Med. 2020; 382: 989-998
        • Barrot L.
        • Asfar P.
        • Mauny F.
        • Winiszewski H.
        • Montini F.
        • Badie J.
        • et al.
        • LOCO2 investigators and REVA research Network
        Liberal or conservative oxygen therapy for acute respiratory distress syndrome.
        N Engl J Med. 2020; 382: 999-1008
        • Angus D.C.
        Oxygen therapy for the critically ill.
        N Engl J Med. 2020; 382: 1054-1056
        • Matthes K.
        Untersuchungen uber die Sauerstoffsattigung des menschlichen Arterien Blutes.
        N Schmied Arch Pharmacol. 1935; 179: 698-711
        • Johnson A.L.
        • Stephen C.R.
        • Sekeli P.
        Clinical use of the oximeter.
        Can Med Assoc J. 1950; 63: 552-555
        • Aoyagi T.
        Pulse oximetry: its invention, theory and future.
        J Anesth. 2003; 17: 259-266
        • Moller J.T.
        • Johannessen N.W.
        • Espersen K.
        • Ravlo O.
        • Pedersen B.D.
        • Jensen P.F.
        • et al.
        Randomized evaluation of pulse oximetry in 20,802 patients; ii: perioperative events and postoperative complications.
        Anesthesiology. 1993; 78: 445-453
        • Carles G.
        • Brewer L.
        • Harvey A.R.
        Measurement of absorption in scattering media using objective laser speckle: application to blood oximetry.
        Opt Express. 2020; 28: 5119-5133
        • Du Y.
        • Tu L.
        • Zhu P.
        • Mu M.
        • Wang R.
        • Yang P.
        • et al.
        Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study.
        Am J Respir Crit Care Med. 2020; 201: 1372-1379
        • Bhatraju P.K.
        • Ghassemieh B.J.
        • Nichols M.
        • Kim R.
        • Jerome K.R.
        • Nalla A.K.
        • et al.
        Covid-19 in critically ill patients in the Seattle region - case Series.
        N Engl J Med. 2020; 382: 2012-2022
        • Brower R.G.
        • Matthay M.A.
        • Morris A.
        • Schoenfeld D.
        • Thompson B.T.
        • Wheeler A.
        • Acute Respiratory Distress Syndrome Network
        Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.
        N Engl J Med. 2000; 342: 1301-1308